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Abstract. In the presence of a surface the Landau-Devonshire equations of ferroelectricity must be ex-
tended to include a boundary condition. For a ferroelectric with a second-order transition in the case when
the polarization p(z) increases at the surface, it is well known that a surface state occurs in a range of tem-
perature above the bulk critical temperature tCB . Here we explore the corresponding effect for a first-order
ferroelectric. We show that a surface state can occur, but only if the surface effect is sufficiently strong.
Analytic expressions are derived and illustrated for p(z), the surface value pS = p(0) and the free energy.
The transition from the paraelectric state (p = 0) to the surface state is first order, and for completeness
we establish the dependence of the three critical temperatures (supercooling, thermodynamic and super-
heating) on a boundary-condition parameter y. In a final section, we derive and illustrate expressions for
p(z)in the temperature range t < tCB .

PACS. 77.80.Bh Phase transitions and Curie point – 68.35.Rh Phase transitions and critical phenomena
– 73.20.-r Electron states at surfaces and interfaces

1 Introduction

The technology of ferroelectric memories has seen tremen-
dous progress, which is actually made possible as the re-
sults of the exploitation of the characteristics properties
of ferroelectrics particularly thin film ferroelectrics [1,2].
Important advances in recent years in the physics of thin-
film ferroelectrics, particularly its oxides, have been re-
viewed recently by Dawber et al. [3]. As the trend of de-
vice fabrication is to have higher packing density per area,
it therefore leads to the reduction in size of the individual
component. In particular, miniaturization of the compo-
nents results in aggravating the surface and size effects
that influence the extrinsic properties of ferroelectric thin
film such as dielectric properties, critical temperature, and
etc. [1,2]. These effects may ultimately affect the quality
and efficiency of devices. The influence of surface in partic-
ular is a fundamental problem that has to be addressed in
order to improve further on device performance. In order
to gain a deeper understanding of the underlying physics,
the problem is best considered normally from the first-
principle calculations but they are usually quite computer
demanding [3–7]. Hence, other theoretical and computer
simulation approaches are more often exploited to study
the surface influence. Examples of these approaches are
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the Landau-Ginzburg (LG) theory [8–10], the Ising model
in a transverse field [11,12], the mean-field theory [13],
and an atomic-level simulation technique [14].

The presence of surfaces in thin films leads to the pos-
sibility of a surface-ordered state. In the surface-ordered
state, the transition temperature is higher than the crit-
ical temperature for bulk ferroelectrics and the sponta-
neous polarization becomes a function of distance from
the surface. It is found experimentally that the polariza-
tion can be suppressed or even enhanced in FE materials
with reduced spatial dimension [15,16]. The extent of the
distance dependence is known to be related to the surface
parameter, and thus for a very thin film, the effect could
alter the polarization profile significantly and could have
a dramatic influence not only on the intrinsic characteris-
tics but also on the dynamics properties of the film. We
have studied this further by investigating the properties
of the surface-ordered state for single surface ferroelectrics
undergoing first-order phase transition. The single surface
problem is chosen because of the simplicity in understand-
ing the physics and the effects found can easily be related
to the effects existed in ferroelectrics films. Furthermore,
there are many materials undergoing a first-order para-
electric to ferroelectric transition and we mention in par-
ticular BaTiO3 and Bi4Ti3O2.

The Landau-Devonshire (LD) form of mean-field the-
ory is widely used to model the phase transition to ferro-
electricity [17]. The free energy F is expanded as a power
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series in the components of the polarization P. In the
simplest form of the theory the expansion is truncated
at quartic terms and the expressions derived for equilib-
rium quantities such as the static polarization describe a
second-order thermodynamic transition. In practice, most
transitions to ferroelectricity are first order and to describe
these, the expansion of F must be continued to include
sixth-order terms in P.

The possibility of a surface-ordered state with a tran-
sition temperature higher than the critical temperature
for bulk ferroelectricity was considered by Kretschmer and
Binder [18] using the extension of Landau theory that had
previously been applied to magnetic surfaces by Lubensky
and Rubin [19]. In the surface state, since P is a function
of distance z from the surface, thust F must be written as
an integral over z, with the integrand including a term
in |∇P|2. The minimum of F that corresponds to the
equilibrium state P (z) is then determined by an Euler-
Lagrange equation. This can only be solved with the aid
of a boundary condition which is derived from the lowest-
order surface invariants in F . Kretschmer and Binder [18]
derived analytic forms for P (z) and for the surface criti-
cal temperature TCS. Despite the importance of first-order
transitions in ferroelectricity, comparatively little has been
done to extend this form of study to first-order materials.
And the first question is: does a surface state occur at all?

Interestingly, any work on first-order surfaces would
have been thought to be numerical in nature, however
here, we show that in fact analytic expressions in terms
of elementary functions can be found for P (z) and re-
lated quantities for the surface state on a first-order
ferroelectric. The transition from the high-temperature
paraelectric phase into the surface state is first order. We
give analytic results for the supercooling and superheat-
ing temperatures in terms of the parameter y (inverse ex-
trapolation length) that characterizes the surface, and we
show a numerically calculated curve for the y dependence
of the thermodynamic critical temperature. From the lat-
ter we are able to prove that the surface state exists only
for y > yC , where the critical value is yC

∼= 0.37. In addi-
tion to the main work on the surface state, we also derive
expressions for the surface modification of P (z) when the
temperature is below the bulk critical temperature.

2 Formalism and reduced units

We start by reviewing the LD theory and introduce the
dimensionless units which can be used to derive quasi-
universal results. For a bulk material the LD free-energy
density may be written in terms of the polarization P
(dipole moment per unit volume) as [20]

FB =
A

2ε0
P 2 +

B

4ε2
0

P 4 +
C

6ε3
0

P 6, B < 0, C > 0. (1)

Here A, B and C are phenomenological constants. The
powers of ε0 in the denominators are not always used, but
they are convenient for some purposes, for example the
calculation of nonlinear-optical coefficients [21,22]. In or-
der to reproduce the experimental behaviour, in particular

the susceptibility and specific heat, A is taken to depend
on temperature T :

A = a (T − T0) . (2)

Here we introduce the units that have been used previ-
ously [23,24] and are similar to those used by Lines and
Glass [20] in their discussion of the dielectric hysteresis
loop. We define

p = P/P0 with P 2
0 = ε0 |B| /2C, (3)

fB = FB/F0 with F0 = |B|3 /8C2, (4)

and a reduced temperature

t =
4aC (T − T0)

|B|2 . (5)

Note that (5) is a scaling of T − T0 and not merely of T .
In consequence, negative values of t can occur. Further-
more, the value of t corresponding to T = 0 is a material-
dependent parameter, so the results to be derived are
quasi-universal rather than universal.

Substituting (3) to (5) into (1) we find

fB =
1
2
tp2 − 1

2
p4 +

1
6
p6 . (6)

Solution of df
dp = 0 for non-zero p yields an expression for

the bulk polarization pB:

p2
B = 1 + (1 − t)1/2

. (7)

Following a common procedure, we find the thermody-
namic critical temperature tCB = 0.75, where the free
energies of the paraelectric and ferroelectric phases are
equal. The ferroelectric phase can persist as a metastable
phase (local, but not global, minimum) up to a critical
superheating temperature tSHB = 1.0. Likewise the para-
electric phase can persist as a metastable phase down to
the critical supercooling temperature tSCB = 0. In sum-
mary,

tSCB = 0, tCB = 0.75, tSHB = 1.0. (8)

We add B for bulk to distinguish these from the corre-
sponding surface values, which will be found later.

The new results to be presented later are for the sur-
face of a first-order ferroelectric. For a semi-infinite sample
we use the obvious generalization of the form applied for
second-order materials [18,19,25,26], namely

F =

∞∫

0

[
A

2ε0
P 2 +

B

4ε2
0

P 4 +
C

6ε3
0

P 6

+
D

2ε0

(
dP

dz

)2 ]
dz +

1
2δ

P 2
S , (9)

where PS is the value of P at the surface. We define di-
mensionless units by means of (3) and (5) together with

ζ =
B

2C1/2D1/2
z (10)



J. Osman et al.: Surface state on first-order ferroelectrics 145

to find

f =

∞∫

0

[
1
2
tp2 − 1

2
p4 +

1
6
p6 +

1
2

(
dp

dζ

)2
]

dζ +
1
2η

p2
S ,

(11)
where the dimensionless pS is the surface value of p,

f =
4C3/2

D1/2B2
F (12)

and
η =

B

2C1/2D1/2
δ. (13)

Variation of f with respect to p gives the Euler-Lagrange
equation

d2p

dζ2
− tp + 2p3 − p5 = 0 (14)

together with the boundary condition

dp

dζ
=

1
η
p at ζ = 0. (15)

We shall also make use of the first integral of (14), which is

1
2

(
dp

dζ

)2

=
1
2
tp2 − 1

2
p4 +

1
6
p6 + c = fB(p) + c, (16)

where c is the constant of integration and fB(p) is the
bulk free energy as defined in (6).

Equations (14) to (16) set out the mathematical frame-
work for the questions to be discussed in subsequent sec-
tions. As in second-order materials [18], negative η gives
an increase in p at the surface and is therefore a candidate
for a surface state. Usually it is the inverse of η that enters,
so instead of η we use the parameter y = −1/η. We show
in Section 3 that a surface state does occur, but only for
y larger than a critical value yC , that is, for a sufficiently
strong surface effect. Not surprisingly, the transition from
the paraelectric phase to the surface state is first order,
so we find three critical temperatures tSCS , tCS and tSHS ,
all of which are functions of y. In the second part of Section
3 we discuss the polarization profile, that is, the function
p(ζ), for the surface state. For t < tCB = 0.75 the stable
bulk state has p equal to pB as given by (7). However,
because of the boundary condition (15) p differs from pB

near the surface, increasing for positive y and decreasing
for negative y. This surface modification of the bulk fer-
roelectric phase is discussed in Section 4.

3 Surface state

We now show that for y positive and sufficiently large,
corresponding to an increase in p at the surface relative to
the bulk value, in some temperature range t > tCB = 0.75
there is a solution of (15) and (16) in which p takes a non-
zero value pS at ζ = 0 and p → 0 as ζ → ∞. This is the
Kretschmer-Binder [18] surface state with a ferroelectric
surface (p �= 0) on the bulk paraelectric phase (p = 0).

Since for an assumed surface state both p → 0 and
dp
dζ → 0 as ζ → ∞, the constant of integration c in (16) is
zero. Hence the polarization profile is given by

∫ p

pS

dp

p
(
t − p2 + 1

3p4
)1/2

= −ζ (17)

where the negative sign is taken for the square root of (16)
because p is a decreasing function of ζ. In (17) the up-
per limit p of the integrand is the value at position ζ.
From (17) we obtain

p =
{

2t

1 + ∆1/2 sinh (Z)

}1/2

, (18)

where
∆ =

4
3
t − 1, Z = 2t1/2 (ζ − ζ0) , (19)

and ζ0 is a function of the lower limit pS , that is, a constant
of integration, which will be determined from the bound-
ary condition. The solution (18) is valid for t > tCB = 3/4
which is the temperature region where surface ordering
should be found.

Substitution of (18) into the boundary condition (15)
gives the equation for ζ0 which takes the form

t1/2∆1/2 cosh
(
2t1/2ζ0

)
= y

[
1 − ∆1/2 sinh

(
2t1/2ζ0

)]
,

(20)
in which it will be recalled that y = −1/η. As can be seen
from (18) the surface value pS is related to ζ0 by

pS =

[
2t

1 − ∆1/2 sinh
(
2t1/2ζ0

)
]1/2

. (21)

The free energy may be found by substitution of (18)
in (11). However, it is convenient to express the free energy
in terms of pS . Since the constant of integration c in (16)
is zero, the polynomial in p in (11) can be expressed in
terms of dp

dζ to bring f into the form

f =
∫ ∞

0

(
dp

dζ

)2

dζ +
1
2η

p2
S =

∫ 0

pS

dp

dζ
dp +

1
2η

p2
S

=
∫ pS

0

p

(
t − p2 +

1
3
p4

)1/2

dp +
1
2η

p2
S , (22)

which can be reduced to [27]

f =
1
8

{
a2

s

(
t − p2

S +
1
3
p4

S

)1/2

+ 3t1/2 +
33/2

2
∆

×
[
sinh−1

(
a2

s

3 (∆)1/2

)
+ sinh−1

(
1

∆1/2

)]
− 4yp2

S

}
.

(23)

where a2
s = 2p2

s − 3.
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Fig. 1. Example graph of equation (20): y versus ζ0 for t = 0.8.
The graph is used to find ζ0, given y, and as illustrated over
some range of y there are two solutions for ζ0.

The results we require are derived from equations (18),
(20), (21) and (23). Before we discuss these we review the
calculation of the supercooling temperature for the para-
electric phase. Assume that the paraelectric phase p = 0
persists as a metastable phase in some temperature inter-
val below the thermodynamic critical temperature tCS . At
the supercooling temperature tSCS the paraelectric phase
changes from metastable (local energy minimum) to un-
stable (local energy maximum). At this temperature the
phase is unstable against infinitesimal changes in p. Con-
sequently tSCS is the temperature at which the linearised
Euler-Lagrange equation has a solution. The linearized
form of (14) is

d2p

dζ2
− tp = 0 (24)

and this is to be solved with the boundary condition (15).
The solution of (24) that satisfies p → 0 as ζ → ∞ is
simply a decreasing exponential and substitution into (15)
gives

tSCS = y2. (25)

This is identical to the equation for the critical tempera-
ture of the surface state on a second-order material [18].
The limits of (25) are tSCS = 0 for y = 0 and tSCS → ∞ as
y → ∞. For the former the boundary condition is dp

dζ = 0
so that there is no increase in p at the surface and tSCS

coincides with tSCB.
We now turn to the boundary condition (20). In the

physical problem y is a material constant so (20) deter-
mines the constant of integration ζ0 as a function of t.
However, it is easier to start by finding ζ0 as a function
of y. An example of the corresponding graph is shown in
Figure 1. The asymptotic values are y → ∓t1/2 as ζ0 →
±∞ The infinity in y is at ζ0 = − 1

2t1/2 sinh−1
(
∆−1/2

)
and

the minimum is at ζ0 = − 1
2t1/2 sinh−1

(
∆1/2

)
with value

y = (t − 3/4)1/2. The surface state occurs only for posi-

Fig. 2. Graph of surface polarization pS versus t for y = 1,
drawn from (20) and (21).

tive y, so we are concerned with the left-hand portion of
the graph. It is seen from this that for sufficiently large y
there is just one solution for ζ0, for an intermediate range
of values of y, as illustrated in Figure 1, there are two so-
lutions, and for small y there are no solutions. For later
reference, we mark the root to the right of the minimum as
A and the root to the left as B. The relevant inequalities,
expressed in terms of t, are:

t > y2 + 3/4 no solutions, (26)

y2 < t < y2 + 3/4 two solutions, (27)

t < y2 one solution. (28)

It is seen from (25) that the inequality (28) is the same as
t < tSCS and correspondingly we use (26) to identify the
superheating temperature tSHS for the surface state as

tSHS = y2 + 3/4. (29)

Given the solution of (20), (21) may be used to draw pS

versus t for given y and an example is shown in Figure 2.
As marked, the upper part of the curve corresponds to root
A in Figure 1 and the ‘return portion’ to root B; sections
A and B meet at t = tSHS and B terminates on the line
pS = 0 at t = tSCS . The line pS = 0 for t > tSCS is the
paraelectric phase, first metastable and then stable. The
curve in Figure 2 is typical of first-order transitions and we
may anticipate that portion B is unstable, while A is stable
at low t and metastable at a higher range of t. As indicated
in Figure 2, the equilibrium phase transition takes place at
the thermodynamic critical temperature tCS, intermediate
between tSCS and tSHS .

In order to find tCS it is necessary to evaluate the free
energy f from (23). For a given value of y, (21) gives pS

as a function of t, so that (23) gives f as a function of
t. An example of this graph is shown in Figure 3, which
like Figure 2 is in the characteristic form for a first-order
transition. As anticipated, portion B is unstable (d2f

dt2 > 0)
and tCS is the point f = 0 on portion A.

Repeated calculation of curves like Figure 3 enables us
to find tCS numerically as a function of y; this is shown in
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Fig. 3. Graph of free energy f versus t for y = 1, drawn
from (23). A and B correspond to the marked portions of the
pS curve in Figure 2, and the three critical temperatures are
marked.

Fig. 4. The three critical temperatures tSCS, tCS and tSHS as
functions of y.

Figure 4 together with the curves for tSCS and tSHS taken
from (25) and (29). It will be recalled that the formalism
of this section holds only for t > 0.75, since tCB = 0.75 is
the bulk thermodynamic critical temperature. The graphs
in Figure 4 are therefore drawn for this range, and it is
seen that there is a solution for tCS only if y > yC , where
the critical value is yC

∼= 0.37. In this way the first-order
material differs from the second-order, for which there is
a surface state for all values of y [18].

Finally in this section we show, in Figure 5, examples
of the polarization profile p(ζ), drawn from (15), (16), (18)
and (21) for the value y = 1. For the highest temperature,
t = 1.3 (Fig. 5b), p(ζ) decreases in a simple way from
pS to zero. However, for t near to 0.75, the curve has a
more complicated form with a plateau a little distance in
from the surface. This is seen prominently for t = 0.755
(Fig. 5a) and in a minor way for t = 0.8 (Fig. 5b). The
reason can be seen from the insets to Figures 5a and 5b.
tCB = 0.75 is the bulk thermodynamic critical tempera-
ture, and for t just above 0.75 the bulk ferroelectric phase
is metastable, nearly stable. The curve for p(ζ) is there-
fore ‘pulled’ by the bulk value pB; to clarify this the values

(a)

(b)

Fig. 5. Surface-state polarization profiles p(ζ) for y = 1.
(a) t = 0.755, (b) t = 0.8, and t = 1.3. For t = 0.755 and
t = 0.8 the values of pB, as in (7), are marked. The insets show
the p dependence of the bulk free energy fB(p).

of pB at t = 0.755 and t = 0.8 are indicated on the ver-
tical scale. Algebraically, the condition for a zero in the

second derivative
d2(p2)

dζ2 is sinh Z = ∆1/2
(
cosh2 Z + 1

)
,

where Z = 2t1/2 (ζ − ζ0) as in (19), and this condition
can be satisfied for some value of Z in the temperature
range under discussion. With reference to Figure 4, the
‘plateau’ form is seen for all values of y in a narrow strip
of t values just above t = 0.75; y = 1 is typical.

4 Surface modification of bulk states

For t < tCB, where tCB = 0.75 is the bulk critical tem-
perature, the polarization p has the bulk value pB, given
by (7), for ζ remote from the surface. The effect of the
boundary condition (15) is that p changes near to the sur-
face, increasing for positive y and decreasing for negative
y. This change does not alter the values of the critical
temperatures because the volume of the surface region in
which p �= pB is negligible compared with the total vol-
ume. The only physical effect is the surface profile of p,
and this is what we discuss in this section.
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(a) (b)

(c) (d)

Fig. 6. Surface modification of the bulk phase, p(ζ) versus ζ. (a) t = 0.5, positive y; (b) t = 0.745, positive y; (c) t = 0.5,
negative y; (d) t = 0.745, negative y.

To find p(ζ) we solve (14) with boundary condi-
tion (15). Since now p → pB as ζ → ∞ the constant
of integration in (16) is no longer zero; instead (16) takes
the form

1
2

(
dp

dζ

)2

= fB(p) − fB(pB), (30)

where fB(p) is the bulk free energy introduced in (6).
Equation (30) leads to

∫ p

pS

31/2dp

(p2 − p2
B) (p2 + 2p2

B − 3)1/2
= −ζ, (31)

and the upper limit of the integral is the value of p at posi-
tion ζ. The result follows from evaluating the integral [27]:

1
2pBτ1/2

{
sinh−1

[
a2

B + ppB

aB (p − pB)

]

− sinh−1

[
a2

B − ppB

aB (p + pB)

]}
= ζ − ζ0, (32)

where

τ = p2
B − 1 = (1 − t)1/2

, a2
B = 2p2

B − 3. (33)

In (32) we have used the form of the integral that applies
for τ > 1/2, i.e. t < 0.75. This is the temperature range
in which the bulk ferroelectric phase is stable. In a similar
way to what was done in (18), the contribution from the
lower limit of the integral in (31) has been taken into the
constant of integration ζ0.

Substitution of (32) into the boundary condition (15)
gives

1

(a2
B + p2

B)1/2 (p2
S − p2

B)
=

1
31/2 |y| pS

(34)

and as before pS is p(ζ = 0), the value of p at the surface.
Equations (32) and (34) can be used to draw the polar-

ization profile p (ζ) for given y and t; examples are shown
in Figure 6. Figures 6a and 6b are for positive values of
y, the first for t well below tCB and the second for t near
tCB; both show a monotonic decrease from pS to pB. It
is seen from the comparison of these two figures that the
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modification of pB extends further from the surface for
t near tCB; this is the usual increase of the temperature-
dependent coherence length. Figures 6c and 6d, y negative
and pS < pB, are drawn for the same temperatures. The
low-temperature curve, Figure 6c, shows a simple mono-
tonic increase from pS to pB. For t near tCB, Figure 6d,
and the smaller values of |y|, the profiles are similar to
those in Figure 6c, except that as in Figure 6b the surface
modification extends further in. For t near tCB and larger
|y|, y = −2, p (ζ) retains a low value for an extended range
of ζ near the surface. For such temperatures, the paraelec-
tric phase p = 0 is metastable, nearly stable, so that over
some range of ζ p (ζ) remains close to zero. This ‘attrac-
tion’ of the metastable phase is similar to that shown for
the surface state for t just above 0.75 in Figure 5; it is
characteristic of a first-order phase transition. For y < 0
the polarization profile is part of the complete solution
of (31) with the asymptotic limits p → pB as ζ → ∞
and p → −pB as ζ → −∞. This has been applied pre-
viously [28] to describe 180◦ domain walls in first-order
material.

5 Conclusion

We have given a complete account of the theory of sur-
face states on first-order ferroelectrics within the model
defined by the free-energy expression (9). All of the neces-
sary results are given analytically in terms of elementary
functions. In Section 3 we discussed the surface state that
is found for positive y (p (ζ) increasing at the surface) in a
certain range of temperature above the bulk critical tem-
perature, tCB. This state is found only when the surface
effect is sufficiently strong (y > 0.37). The transition from
the surface state to the paraelectric state (p = 0) is first
order; the temperature dependences of the surface value
pS and the free energy f are of the characteristic form for
first-order transitions. For most of the temperature range
the polarization profile resembles that for a second-order
material [2] but in a narrow temperature interval near tCB

a clear indication is seen of the presence of a metastable
state characteristic of a first-order transition. The surface
modification of the bulk polarization p = pB for t < tCB

is discussed in Section 4. Here also, the results are ana-
lytic and in fact the form of p (ζ) is identical to part of a
180◦ domain wall [28]. For negative y, pS < pB, and t near
tCB the influence of the metastable paraelectric phase is
clearly seen.

In their paper on surface states on second-order fer-
roelectrics, Kretschmer and Binder [18] devote a section
to the critical region of temperature near to the surface
transition temperature. In this region, which in practice
for ferroelectrics is usually very small, mean-field theory
does not hold because of strong thermodynamic fluctu-
ations in the order parameter p. However, fluctuations
have a negligible effect on first-order transitions, and there
is therefore no need to extend Kretschmer and Binder’s
renormalization-group analysis to the present case.

It is important to note here that the main purpose of
this paper is not to present results to compared with ex-

perimental findings directly. Instead, it is aimed at a sys-
tematic investigation, via analytical expressions, to look
for qualitative surface effects and to illustrate general de-
pendencies of polarization at the surface on the essen-
tial model parameters: “y”. The results obtained may
be of particularly importance in the understanding of
surface ferroelectricity. In this case, the model that has
been constructed for the case with negative y might be
physically relevant to the degradation of polarization at
the surface found experimentally in most perovskite fer-
roelectrics [29]. In addition, it is also quite similar to
the results obtained by the shell model calculation [14]
and quantum mechanical approach [30] for BaTiO3 films.
Recently, enhancement of polarizations at the surface
of PbTiO3 films was evidenced by X-ray photoelectric
diffractions [31]. The results simply indicate the possible
existence of positive y surfaces. An increase in polariza-
tion at the surface of a PbTiO3 film predicted theoretically
by first-principle calculations [31,32] further supports the
validity of a positive y surface.

The present model mainly considers the properties of
surface corresponding to a single slab of ferroelectric ma-
terials, i.e. the surface of a semi-infinite medium. For lay-
ered structures such as heterostructures of films grown on
substrate and multilayers, the effects of interface and cou-
pling between neighboring constituents may affect the be-
haviors of the structure and must be considered. In other
words, the properties of layered ferroelectrics may be de-
termined by the interface region — “interface structure”.
The nature of interfacial coupling on the static and dy-
namic properties of an interface structure formed between
two semi-infinite ferroelectric constituents was recently
constructed and discussed carefully using the Landau-
Ginzburg theory [9,33–35]. Recently, there has also been
published work on studies of interface effects using first-
principle calculations [36], and other works have also been
reviewed [3].

The authors would like to thank Universiti Sains Malaysia for
financial support.
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